TensorFlow2.0(八)--tf.function函数转换

•TensorFlow2.0 专栏收录该内容
12 篇文章 7 订阅

1. 关于tf.function

tf.function的官方含义是“Creates a callable TensorFlow graph from a Python function.”也就是说,tf.function可以从 Python 函数创建可调用的 TensorFlow 图。这意味着什么呢?通俗点来说,我们可以自己编写python函数,然后利用tf.function进行函数转化,形成TensorFlow图结构,对函数进行加速。说白了,tf.function可以优化并加速我们自己编写的python函数。

2. tf.function 的实现

我们以一个激活函数“elu”为例,来看看经过tf.function的优化有什么变化:

# tf.function and auto-graph.
def scaled_elu(z, scale=1.0, alpha=1.0):
    # z >= 0 ? scale * z : scale * alpha * tf.nn.elu(z)
    is_positive = tf.greater_equal(z, 0.0)
    return scale * tf.where(is_positive, z, alpha * tf.nn.elu(z))

print(scaled_elu(tf.constant(-3.)))
print(scaled_elu(tf.constant([-3., -2.5])))
"""
# 经过tf.function优化之后在输出结果
"""
scaled_elu_tf = tf.function(scaled_elu)
print(scaled_elu_tf(tf.constant(-3.)))
print(scaled_elu_tf(tf.constant([-3., -2.5])))
"""
# 将优化之后的scaled_elu_tf 再次转化为python下的函数,比较二者是否一致
"""
print(scaled_elu_tf.python_function is scaled_elu)

输出结果为:
在这里插入图片描述
这里我们发现,经过tf.function之后的函数功能上是没有任何变化的,然后我们对比一下二者的运行时间:

%timeit scaled_elu(tf.random.normal((1000, 1000)))
%timeit scaled_elu_tf(tf.random.normal((1000, 1000)))

输出结果为:
在这里插入图片描述
从这里可以看出,经过tf.funcion()优化之后的函数,具有更快的运行速度。

3. 关于@tf.function

tf.function除了第二节的的实现方式之外呢,我们还可以这么做:

@tf.function
def scaled_elu(z, scale=1.0, alpha=1.0):
    # z >= 0 ? scale * z : scale * alpha * tf.nn.elu(z)
    is_positive = tf.greater_equal(z, 0.0)
    return scale * tf.where(is_positive, z, alpha * tf.nn.elu(z))

二者是等价的。

  • 1
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
<ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>Tensorflow2.0介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> tensorflow是GOOGLE在2015年底发布的一款深度学习框架,也是目前全世界用得最多,发展最好的深度学习框架。2019年3月8日,GOOGLE发布最新tensorflow2版本。新版本的tensorflow有很多新特征,更快更容易使用更人性化。但是老版的tensorflow程序在新版本中几乎都无法继续使用,所以我们有必要学习新版tensorflow2的新用法。 </p> <ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>课程介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> 我们的这门课程适合小白学习,也适合有基础的同学学习。课程会从0开始学习,从python环境安装,python入门,numpy,pandas,matplotlib使用,深度学习基础,一直讲到tensorflow基础,进阶,项目实战。不管你是0基础小白,想进入AI行业,还是有一定基础,想学习最新的tensorflow2的使用,都适合我们这门课程。 </p> <ul style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> <li> <span>讲师介绍:</span> </li> </ul> <p style="color:rgba(0,0,0,.560784);font-size:14px;background-color:#FFFFFF;"> 覃秉丰,物理系毕业转AI行业,想转行同学可以找我聊聊。机器学习、深度学习神经网络领域多年研究开发授课经验,精通算法原理与编程实践;曾完成过多项图像识别、目标识别、语音识别等企业项目,一线实战经验丰富;长期为多家包括世界五百强在内的大型企业总部做人工智能技术内训服务(中国移动、中国银行,华夏银行,中国太平洋,国家电网、中海油等)。上课特点:公式尽量一个一个符号推,代码尽量一行一行讲,希望所有人都能学有所得。 </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页

打赏

爱吃骨头的猫、

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值